1. Suppose that f is an integrable odd function. Then for any real number $a \in \mathbb{R}$

$$
\int_{-a}^{a} f(x) d x=0
$$

2. Suppose that f is an integrable even function. Then for any real number $a \in \mathbb{R}$

$$
\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x
$$

3. Suppose that $k \in \mathbb{R}, k \neq 0$. Then for any interval $[a, b]$ of length $\frac{2 \pi n}{k}$ where $n \in \mathbb{N}_{0}$

$$
\int_{a}^{b} \sin k x d x=0
$$

and

$$
\int_{a}^{b} \cos k x d x=0
$$

4. Let f be an integrable periodic function of period P. Then for any $a \in \mathbb{R}$ we have

$$
\int_{a}^{a+P} f(x) d x=\int_{0}^{P} f(x) d x
$$

5. Let f be an integrable odd periodic function of period P. Then for any interval $[a, b]$ of length $n P$ where $n \in \mathbb{N}_{0}$

$$
\int_{a}^{b} f(x) d x=0
$$

